Shift of the pupil center with pupil constriction.

J.R. CHARLIER, M. BEHAGUE and C. BUQUET.

U279 INSERM - Lille, France

Purpose. Several studies have reported a shift of the pupil center while it constricts. The aim of this study was to evaluate the influence of gaze orientation on this phenomenon. For this purpose, we studied the relative contribution of three mechanisms: the anisotropic contraction of the iris, the mechanical displacement of the pupil due to the curvature of the lens and the optical formation of the virtual image of the pupil through the corneal diopter.

Methods. The study was performed on 6 adult subjects. We measured the position of the pupil and corneal reflex images with a photo-oculographic system from Metrovision and the geometry of the anterior chamber with an EAS1000 system from Nidek. These measurements were made for 5 gaze orientations (1 central and 1 in each quadrant at 14 degrees of eccentricity). The pupil size was varied by adjusting the ambient illumination.

Results. Our data confirm that, while the pupil constricts, its center moves in the nasal superior direction. The amplitude of this displacement varied with the eccentricity of gaze: for a change of 1 mm in pupil diameter, the displacement was 0.022 mm for temporal fixation, 0.038 mm for central and 0.060 mm for nasal. Biometric measurements showed a simultaneous advance of the iris within the anterior chamber, following the curvature of the lens, of 0.072 mm.

Conclusions. Our results show that the slope of the displacement of the pupil while it constricts is asymmetric. This asymmetry results from a combination of movements toward the nasal superior direction and forward.
INTRODUCTION

Several authors have reported a shift of the pupil center while it constricts (Legrand, 1965, Paris & Charlier, 1987, Wilson & al, 1992, Fujita & al, 1993, Buquet & Charlier, 1994). The aim of this study was to evaluate the influence of gaze orientation on this phenomenon and its possible influence on the interpretation of the Hirschberg test. In order to evaluate the relative contribution of mechanisms responsible for this phenomenon, we studied the relative displacement of the pupil image in relationship with the movements of the pupil within the anterior chamber during variations of the ambient illumination.

METHODS

Subjects were fixating monocularly a 5 arc min target at a distance 1.25 meters with their head fixed with a bite board. The positions of the centers of the pupil contour and corneal reflex images were measured with a photo-oculographic system from Metrovision (near infra-red illumination at 880 nm, sampling rate = 30 images per second). These measurements were made for 5 gaze orientations (1 central and 1 in each quadrant at 14 degrees of eccentricity). The pupil size was varied by adjusting the ambient illumination. The geometry of the anterior chamber was measured from digital images recorded with an EAS1000 system from Nidek.

RESULTS

The following figures show the horizontal and vertical displacements of the pupil as a function of the pupil radius measured from 6 subjects for a central fixation.

![Graph showing horizontal displacement of the pupil center](image)
vertical displacement
of the pupil center

The following figures show an example of the horizontal and vertical displacements of the pupil as a function of the pupil radius measured from the same subject for central and eccentric fixations

Horizontal displacement of the pupil for superior-temporal fixation

Horizontal displacement of the pupil for superior-nasal fixation
Horizontal displacement of the pupil for central fixation

\[y = 0.13323 + 0.076040 \times \]

Horizontal displacement of the pupil for inferior-temporal fixation

\[y = 1.1374 + 0.032282 \times \]

Horizontal displacement of the pupil for inferior-nasal fixation

\[y = -0.94268 + 0.13214 \times \]
Vertical displacement of the pupil for superior-temporal fixation

\[y = -1.9342 + 0.13839x \]

Vertical displacement of the pupil for superior-nasal fixation

\[y = -1.8922 + 0.13042x \]

Vertical displacement of the pupil for central fixation

\[y = -1.0349 + 0.11381x \]
Vertical displacement of the pupil for inferior-temporal fixation

\[y = -0.092070 + 0.084354 \times \]

Vertical displacement of the pupil for inferior-nasal fixation

\[y = -0.04936 + 0.09435 \times \]

The following figure shows one example of the displacement of the pupil associated with its constriction.

<table>
<thead>
<tr>
<th>radius of the virtual image of the pupil (mm)</th>
<th>MB</th>
<th>MO</th>
</tr>
</thead>
<tbody>
<tr>
<td>dilated</td>
<td>3.59</td>
<td>3.98</td>
</tr>
<tr>
<td>constricted</td>
<td>1.82</td>
<td>1.93</td>
</tr>
<tr>
<td>"forward" displacement</td>
<td>0.37</td>
<td>0.52</td>
</tr>
</tbody>
</table>
DISCUSSION

Our data confirm that, while the pupil constricts, its center moves in the nasal superior direction. The amplitude of this displacement varies between subjects but seems to be reproducible in the same subject.

On average, for adult subjects, 1 degree of rotation results in a displacement of the pupil center relative to the corneal reflex of 0.082 mm. Therefore the shift of the pupil center associated with its constriction may reach values equivalent to 4 degrees of rotation!!!

This effect varies with the eccentricity of gaze: for a change of 1 mm in pupil diameter, the displacement was 0.022 mm for temporal fixation, 0.038 mm for central and 0.060 mm for nasal.

Biometric measurements showed a simultaneous advance of the iris within the anterior chamber, following the curvature of the lens, of 0.072 mm. The changes in pupil shift observed at different eccentricities are found to result from the combination of movements of the pupil within the anterior chamber. While the pupil constricts, its center moves simultaneously in the nasal superior direction and forward.

CONCLUSIONS

Precise measurements of gaze direction based on the Hirschberg principle should take into account displacements of the pupil center associated with its constriction. The appropriate correction seems to be constant for each subject. It varies asymmetrically with the eccentricity of...
fixation, as the result of a combination of movements of the pupil toward the nasal superior direction and forward, in a manner which can be predicted from the curvature of the lens.

REFERENCES

LEGRAND Y. (1965). Optique physiologique. La dioptrique de l’oeil et sa correction. Editions de la revue d'optique, PARIS.
